física

El péndulo simple

El péndulo simple (también llamado péndulo matemático o péndulo ideal) es un sistema idealizado constituido por una partícula de masa m que está suspendida de un punto fijo o mediante un hilo inextensible y sin peso. Naturalmente es imposible la realización práctica de un péndulo simple, pero si es accesible a la teoría.
El péndulo simple o matemático se denomina así en contraposición a los péndulos reales, compuestos o físicos ,




Fundamentos físicos
Un péndulo simple se define como una partícula de masa m suspendida del punto O por un hilo inextensible de longitud l y de masa despreciable.
Si la partícula se desplaza a una posición q0 (ángulo que hace el hilo con la vertical) y luego se suelta, el péndulo comienza a oscilar.













El péndulo describe una trayectoria circular, un arco de una circunferencia de radio l. Estudiaremos su movimiento en la dirección tangencial y en la dirección normal.
Las fuerzas que actúan sobre la partícula de masa m son dos
  • el peso mg
  • La tensión T del hilo

Descomponemos el peso en la acción simultánea de dos componentes, mg·senq  en la dirección tangencial y mg·cosq en la dirección radial.
  • Ecuación del movimiento en la dirección radial
La aceleración de la partícula es an=v2/l dirigida radialmente hacia el centro de su trayectoria circular.
La segunda ley de Newton se escribe
man=T-mg·cosq
Conocido el valor de la velocidad v en la posición angular q  podemos determinar la tensión T del hilo.
La tensión T del hilo es máxima, cuando el péndulo pasa por la posición de equilibrio, T=mg+mv2/l
Es mínima, en los extremos de su trayectoria cuando la velocidad es cero, T=mgcosq0
  • Principio de conservación de la energía
En la posición θ=θ0 el péndulo solamente tiene energía potencial, que se transforma en energía cinética cuando el péndulo pasa por la posición de equilibrio.













Comparemos dos posiciones del péndulo:
En la posición extrema θ=θ0, la energía es solamente potencial.
E=mg(l-l·cosθ0)
En la posición θ, la energía del péndulo es parte cinética y la otra parte potencial
La energía se conserva
v2=2gl(cosθ-cosθ0)
La tensión de la cuerda es
T=mg(3cosθ-2cosθ0)
La tensión de la cuerda no es constante, sino que varía con la posición angular θ. Su valor máximo se alcanza cuando θ=0, el péndulo pasa por la posición de equilibrio (la velocidad es máxima). Su valor mínimo, cuando θ=θ0 (la velocidad es nula).
  • Ecuación del movimiento en la dirección tangencial
La aceleración de la partícula es at=dv/dt.
La segunda ley de Newton se escribe
mat=-mg·senq
La relación entre la aceleración tangencial at y la aceleración angular a es at=a ·l. La ecuación del movimiento se escribe en forma de ecuación diferencial
http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/Image995.gif (1)

Cuando el ángulo q  es pequeño entonces, senq » q el péndulo describe oscilaciones armónicas cuya ecuación es
q =q0·sen(w t+j )
de frecuencia angular w2=g/l, o de periodo
http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/Image996.gif
La ley de la gravitación de Newton describe la fuerza de atracción entre dos cuerpos de masas M y m respectivamente cuyos centros están separados una distancia r.
La intensidad del campo gravitatorio g, o la aceleración de la gravedad en un punto P situado a una distancia r del centro de un cuerpo celeste de masa M es la fuerza sobre la unidad de masa g=F/m colocada en dicho punto.
http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/Image997.gif
su dirección es radial y dirigida hacia el centro del cuerpo celeste.
En la página dedicada al estudio del Sistema Solar, proporcionamos los datos relativos a la masa (o densidad) y radio de los distintos cuerpos celestes.
Ejemplo:
Marte tiene un radio de 3394 km y una masa de 0.11 masas terrestres (5.98·1024 kg). La aceleración g de la gravedad en su superficie es
http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/Image998.gif
Tenemos dos procedimientos para medir esta aceleración
  • Cinemática
Se mide con un cronómetro el tiempo t que tarda en caer una partícula desde una altura h. Se supone que h es mucho más pequeña que el radio r del cuerpo celeste.
http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/Image999.gif
  • Oscilaciones
Se emplea un instrumento mucho más manejable, un péndulo simple de longitud l. Se mide el periodo de varias oscilaciones para minimizar el error de la medida y se calculan  el periodo P de una oscilación. Finalmente, se despeja g de la fórmula del periodo.
De la fórmula del periodo establecemos la siguiente relación lineal.









Se representan los datos "experimentales" en un sistema de ejes:
  • P2/(4p2) en el eje vertical y
  • La longitud del péndulo l en el eje horizontal.
La pendiente de la recta es la inversa de la aceleración de la gravedad g








No hay comentarios:

Publicar un comentario